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Abstract

Diseases such as autism, cardiovascular disease, and the au-
toimmune disorders are difficult to treat because of the re-
markable degree of variation among affected individuals.
Subtyping research seeks to refine the definition of such com-
plex, multi-organ diseases by identifying homogeneous pa-
tient subgroups. In this paper, we propose the Probabilis-
tic Subtyping Model (PSM) to identify subgroups based on
clustering individual clinical severity markers. This task is
challenging due to the presence of nuisance variability—
variations in measurements that are not due to disease
subtype—which, if not accounted for, generate biased esti-
mates for the group-level trajectories. Measurement sparsity
and irregular sampling patterns pose additional challenges in
clustering such data. PSM uses a hierarchical model to ac-
count for these different sources of variability. Our experi-
ments demonstrate that by accounting for nuisance variabil-
ity, PSM is able to more accurately model the marker data.
We also discuss novel subtypes discovered using PSM and
the resulting clinical hypotheses that are now the subject of
follow up clinical experiments.

Introduction and Background

Disease subtyping is the process of developing criteria for
stratifying a population of individuals with a shared dis-
ease into subgroups that exhibit similar traits; a task that
is analogous to clustering in machine learning. Under the
assumption that individuals with similar traits share an un-
derlying disease mechanism, disease subtyping can help
to propose candidate subgroups of individuals that should
be investigated for biological differences. Uncovering such
differences can shed light on the mechanisms specific to
each group. Observable traits useful for identifying sub-
populations of similar patients are called phenotypes. When
such traits have been linked to a distinct underlying pathobi-
ological mechanism, these are then referred to as endotypes
(Anderson 2008).

Traditionally, disease subtyping research has been con-
ducted as a by-product of clinical experience. A clinician
may notice the presence of subgroups, and may perform a
more thorough retrospective or prospective study to confirm
their existence (e.g. Barr et al. 1999). Recently, however,
literature in the medical community has noted the need for

Copyright (© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Fredrick Wigley
Division of Rheumatology
Johns Hopkins School of Medicine
733. N. Broadway
Baltimore, MD 21205
fwig@jhmi.edu

Suchi Saria
Department of Computer Science
Department of Health Policy & Mgmt.
Johns Hopkins University
3400 N. Charles St.
Baltimore, MD 21218
ssaria@cs. jhu.edu

more objective methods for discovering subtypes (De Keu-
lenaer and Brutsaert 2009). Growing repositories of health
data stored in electronic health record (EHR) databases
and patient registries (Blumenthal 2009; Shea and Hripc-
sak 2010) present an exciting opportunity to identify disease
subtypes in an objective, data-driven manner using tools
from machine learning that can help to tackle the problem
of combing through these massive databases. In this work,
we propose such a tool, the Probabilistic Subtyping Model
(PSM), that is designed to discover subtypes of complex,
systemic diseases using longitudinal clinical markers col-
lected in EHR databases and patient registries.

Discovering and refining disease subtypes can benefit
both the practice and the science of medicine. Clinically, dis-
ease subtypes can help to reduce uncertainty in expected out-
come of an individual’s case, thereby improving treatment.
Subtypes can inform therapies and aid in making prognoses
and forecasts about expected costs of care (Chang, Clark,
and Weiner 2011). Scientifically, disease subtypes can help
to improve the effectiveness of clinical trials (Gundlapalli
et al. 2008), drive the design of new genome-wide asso-
ciation studies (Kho et al. 2011; Kohane 2011), and al-
low medical scientists to view related diseases through a
more fine-grained lens that can lead to insights that con-
nect their causes and developmental pathways (Hoshida et
al. 2007). Disease subtyping is considered to be especially
useful for complex, systemic diseases where mechanism is
often poorly understood. Examples of disease subtyping re-
search include work in autism (State and Sestan 2012), car-
diovascular disease (De Keulenaer and Brutsaert 2009), and
Parkinson’s disease (Lewis et al. 2005).

Complex, systemic diseases are characterized using the
level of disease activity present in an array of organ sys-
tems. Clinicians typically measure the influence of a dis-
ease on an organ using clinical tests that quantify the ex-
tent to which that organ’s function has been affected by the
disease. The results of these tests, which we refer to as ill-
ness severity markers (s-markers for short), are being rou-
tinely collected over the course of care for large numbers
of patients within EHR databases and patient registries. For
a single individual, the time series formed by the sequence
of these s-markers can be interpreted as a disease activity
trajectory. Operating under the hypothesis that individuals
with similar disease activity trajectories are more likely to



share mechanism, our goal in this work is to cluster individ-
uals according to their longitudinal clinical marker data and
learn the associated prototypical disease activity trajectories
(i.e. a continuous-time curve characterizing the expected s-
marker values over time) for each subtype.

The s-marker trajectories recorded in EHR databases are
influenced by factors such as age and co-existing condi-
tions that are unrelated to the underlying disease mecha-
nism (Lotvall et al. 2011). We call the effects of these ad-
ditional factors nuisance variability. In order to correctly
cluster individuals and uncover disease subtypes that are
likely candidates for endotyping (Lotvall et al. 2011), it is
important to model and explain away nuisance variability.
In this work, we account for nuisance variability in the fol-
lowing ways. First, we use a population-level regression on
to observed covariates—such as demographic characteris-
tics or co-existing conditions—to account for variability in
s-marker values across individuals. For example, lung func-
tion as measured by the forced expiratory volume (FEV) test
is well-known to be worse in smokers than in non-smokers
(Camilli et al. 1987). Second, we use individual-specific pa-
rameters to account for variability across individuals that is
not predicted using the observed covariates. This form of
variability may last throughout the course of an individual’s
disease (e.g. the individual may have an unusually weak
respiratory system) or may be episodic (e.g. periods dur-
ing which an individual is recovering from a cold). Finally,
the subtypes’ prototypical disease activity trajectories must
be inferred from measurement sequences that vary widely
between individuals in the time-stamp of the first measure-
ment, the duration between consecutive measurements, and
the time-stamp of the last measurement. After accounting
for nuisance variability, our goal is to cluster the time se-
ries formed by the residual activity. We hypothesize that dif-
ferences across such clusters are more likely candidates for
endotype investigations.

A large body of work has focused on identifying subtypes
using genetic data (e.g. Chen et al. 2011). Enabled by the
increasing availability of EHRs, researchers have also re-
cently started to leverage clinical markers to conduct sub-
type investigations. Chen et al. 2007 use the clinarray—a
vector containing summary statistics of all available clinical
markers for an individual—to discover distinct phenotypes
among patients with similar diseases. The clinarray summa-
rizes longitudinal clinical markers using a single statistic,
which ignores the pattern of progression over time. More re-
cently, Ho et al. have used tensor factorization as an alterna-
tive approach to summarizing high-dimensional vectors cre-
ated from EHRs (Ho, Ghosh, and Sun 2014). Others have
used cross-sectional data to piece together disease progres-
sions (e.g. Ross and Dy 2013), but do not model longitudi-
nal data. Another approach to phenotyping using time series
data, often applied in the acute care setting, is to segment
an individual’s time series into windows in order to discover
transient traits that are expressed over shorter durations—
minutes, hours, or days. For example, Saria et al. propose
a probabilistic framework for discovering traits from phys-
iologic time series that have similar shape characteristics
(Saria, Duchi, and Koller 2011) or dynamics characteristics

(Saria, Koller, and Penn 2010). Lasko et al. use deep learn-
ing to induce an over-complete dictionary in order to de-
fine traits observed in shorter segments of clinical markers
(Lasko, Denny, and Levy 2013).

Beyond s-markers, others have used ICD-9 codes—codes
indicating the presence or absence of a condition—to study
comorbidity patterns over time among patients with a shared
disease (e.g. Doshi-Velez, Ge, and Kohane 2014). ICD-9
codes are further removed from the biological processes
measured by quantitative tests. Moreover, the notion of dis-
ease severity is more difficult to infer from codes.

Latent class mixed models (LCMMs) are a family of
methods designed to discover subgroup structure in longitu-
dinal datasets using fixed and random effects (e.g., Muthén
and Shedden 1999, McCulloch et al. 2002, and Nagin and
Odgers 2010). Random effects are typically used in linear
models where an individual’s coefficients may be probabilis-
tically perturbed from the group’s, which alters the model’s
fit to the individual over the entire observation period. Mod-
eling s-marker data for chronic diseases where data are col-
lected over tens of years requires accounting for additional
influences such as those due to transient disease activity. The
task of modeling variability between related time series has
been explored in other contexts (e.g. Listgarten et al. 2006
and Fox et al. 2011). These typically assume regularly sam-
pled time series and model properties that are different from
those in our application.

Work in the machine learning literature has also looked at
relaxing the assumption of regularly sampled data. Marlin
et al. cluster irregular clinical time series from in-hospital
patients to improve mortality prediction using Gaussian
process priors that allow unobserved measurements to be
marginalized (Marlin et al. 2012). Lasko et al. also address
irregular measurements by using MAP estimates of Gaus-
sian processes to impute sparse time series (Lasko, Denny,
and Levy 2013).

In this paper, we propose the Probabilistic Subtyping
Model (PSM), a novel model for discovering disease sub-
types and associated prototypical disease activity trajecto-
ries using observational data that is routinely collected in
electronic health records (EHRs). In particular, our model is
geared towards identifying homogeneous patient subgroups
from s-marker data for chronic diseases, and is particularly
useful for characterizing complex, systemic diseases that are
often poorly understood. Towards this end, PSM uncovers
subtypes and their prototypical disease activity trajectories,
while explaining away variability unrelated to disease sub-
typing; namely (1) covariate-dependent nuisance variability,
(2) individual-specific long-term nuisance variability, and
(3) individual-specific short-term nuisance variability. In ad-
dition, PSM is able to infer these prototypical trajectories
using clinical time series that vary with respect to their end-
points and sampling patterns, which is common in observa-
tional EHR data. To evaluate PSM, we use real and simu-
lated data to demonstrate that, by accounting for these levels
of nuisance variability, PSM is able to both accurately pre-
dict s-markers and accurately recover prototypical disease
activity trajectories. Finally, we discuss novel subtypes dis-
covered using PSM.



Figure 1: Graphical model for PSM.
Probabilistic Subtyping Model

We define a generative model for a collection of M individ-
uals with associated s-marker sequences. For each individ-
ual 4, the s-marker sequence has /NV; measurement times and
values, which are denoted as t; € RYi and ¢; € RV re-
spectively. In addition to the measurement times and values,
each individual is assumed to have a vector of d covariates
#; € RY. The s-marker values #i.); are random variables,
and we assume that 7?'1; M and Zq.ps are fixed and known.
The major conceptual pieces of the model are the sub-
type mixture model, covariate-dependent nuisance variabil-
ity, individual-specific long-term nuisance variability, and
individual-specific short-term nuisance variability. We de-
scribe each of these pieces in turn. The graphical model in
Figure 1 shows the relevant hyperparameters, random vari-
ables, and dependencies.

Subtype mixture model. Each individual is assumed to
belong to one of G latent groups (representing a disease sub-
type). The random variable z; € {1,...,G} encodes sub-
type membership, and is drawn from a multinomial distri-
bution with probability vector ;.. The probabilities 7;.¢
are modeled as a Dirichlet random variable with symmetric
concentration parameter «. Formally, we have:

p(m.c¢) = Dir (11.65 @) (H

P (Zi|7r1:G) = Mult (217 7Tl:G) . (2)

We model each of the subtype prototypical disease activ-

ity trajectories using B-splines. The P B-spline basis func-

tion values at times ¢ are arranged into columns of a feature

matrix ¢ (f) = [¢1 (f) o, 0P (ﬂ], and the prototypical

disease activity trajectory for each subtype g is parameter-

ized by a coefficient vector 3. The coefficients 3, are mod-

eled as vectors drawn from a multivariate normal distribu-
tion:

p (5:;) =N (595:&:57 2ﬂ> . (3)

Covariate-dependent nuisance variability. When one or
more covariates are available that are known to influence
clinical test results, but are posited to be unrelated to the
task of discovering underlying disease mechanisms, the in-
fluences can be accounted for using covariate-dependent

effects. For example, smoking status can partially explain
why an individual’s forced expiratory volume declines more
rapidly, or African American race may be associated with
especially severe scleroderma-related skin fibrosis. By fit-
ting a standard mixture of B-splines to s-marker data di-
rectly, the subtype random variable z; may incorrectly cap-
ture correlations among groups of individuals with similar
covariates. By including covariate-dependent effects, these
correlations are removed, thereby freeing the subtype mix-
ture model to capture residual correlations that are more
likely to be due to shared underlying disease mechanism.
Covariate-dependent effects are modeled using a polynomial
function v (£) p(Z) with feature matrix -y (£) and coefficients
p(Z). We use first order polynomials (lines) with feature ma-
trix for times ¢ defined to be ~ (t_) = [T, f— f}, where £ is
the midpoint of the period over which the subtype trajecto-

ries are being modeled. The coefficients are modeled as a
linear function of the individual’s covariates:

i(#) = Bz, 4)

where B € R?“ is a loading matrix linearly linking the
covariates to the intercept and slope values. Therefore, con-
ditioned on the loading matrix B, individuals with similar
covariates will have similar coefficients p(Z). We model the
rows of the loading matrix B, : ¢ € {1, 2} as multivariate
normal random variables:

p(B..) =N (B!;jiz,T5). )

Individual-specific long-term nuisance variability. An
individual may express additional variability over the entire
observation period beyond what is explained away using co-
variates. For example, an individual may have an unusually
weak respiratory system and so may have a lower baseline
value (intercept) than other individuals with similar covari-
ates. This form of variability is also modeled using first order
polynomials with feature matrix (). The coefficient vector
is a multivariate normal random variable:

P (&\B,@) —N (51-;0, zb) . ©6)

Individual-specific short-term nuisance variability. Fi-
nally, an individual may experience episodic disease activity
that only affects a handful of measurements within a small
time window. For example, there may be periods during
which an individual is recovering from a cold, which tem-
porarily weakens his or her respiratory system and causes
FEV to become depressed over a short period of time. We
model these transient deviations nonparametrically using a
Gaussian process with mean 0 and a squared exponential
covariance function with hyperparameters a and ¢:

p(fi) = GP(fi;0,k(:,-)) @)

RY
k(t1,t2) = a® exp {—<t12£2t2)} . (8)

When treatments exist that can alter long-term course, and
the points at which they are administered vary widely across



individuals, treatments become additional sources of nui-
sance variability. In scleroderma, our disease of interest, and
many other systemic diseases, no drugs known to modify the
long-term course of the disease exist, and, therefore, we do
not tackle this issue. Moreover, treatments are challenging
to fully account for, and subtyping studies that do so often
focus on data from practices that follow a similar treatment
protocol so that variability due to treatment is controlled.

Collapsed likelihood. Conditioned on these four compo-
nents, an individual’s s-marker sequence is modeled as a
spherical multivariate normal with standard deviation o

p (Zjil%jufn@;&ﬁ) ©)
= N (i3 (£) B+ () (BE: +5) + £ (£) . 0L ).

Assuming independence between all individuals condi-

tioned on the model parameters B'lzg, T1.q, and B, the com-
plete likelihood is:

ﬁp (zilm.a) p (gz) p(fi)p (zj}|zi, bi, fn@;c,ﬁ) )
i=1

By marginalizing over the latent variables z;, EL and f;,
the likelihood for each individual can be written as a mixture
of multivariate normals:

p (@|51:G7W1:G7B757fi) = Ezl [N (ﬁEZ7)7 22):| P
where
i) = ¢ (i) B+~ (7) BT,
S = o? T+ k(T 5) + (5) Sy () -

The final joint distribution becomes:

M G
[1» (5l mc B2 @) p(mec) [T (B,) p(B).
i=1 g=1

likelihood prior

(10)

Learning

We want to learn the parameters ® = {5_'1:@, 1.5 B} and

the hyperparameters {a, ¢, o }. Conditioned on choices for
the hyperparameters, we will compute MAP estimates of ©
by optimizing the log of the joint distribution in Equation
10 with respect to ®. The likelihood is a product of sums,
which makes direct optimization difficult. We will instead
use the EM algorithm to maximize the sum of the log prior
and the expected complete-data log likelihood. To choose
{a, ¢, 0}, we use a grid search, often shown to work well in
low dimensions (e.g. Bardenet, Kégl, and others 2010).

Expectation Step Conditioned on estimates of ﬂ_'lzg, TG
and B at time 7, the posterior distribution over z; for each
individual is:

gi(zi)=p (2i|§¢7 Br.c, TG, Bfn@)

= 7N (. 2). (an

where Z; is the normalizing constant of the multinomial.

Maximization Step Using the posterior distribution com-
puted with parameters ®7, the expected complete-data log
likelihood for a single individual as a function of the param-
eters at step 7 + 1 is:

Li(eter) = (12)
By, [logp (2il7]G)] +
]E(Ii |:10gp (?j’b‘z’u 51;217 BT+17 t_’;a j"L):| .
The expected complete-data log likelihood and log priors

on the parameters then form the objective of the maximiza-
tion step:

M
QOO =>"L(e7e") +... (13)
i=1
G —
logp (n[1) + Y logp (1) +logp (B™)
g=1

which we optimize with respect to @7 to obtain the next
set of parameter estimates. We begin by maximizing with re-
spect to 71.. Dropping terms that do not include 7. from
Equation 13, we find that the objective is maximized using
the standard Dirichlet-multinomial posterior estimates. We
use a block coordinate ascent algorithm to maximize the ob-
jective with respect to 31.¢ and B. We break the parameters
into G + 2 blocks; one block for each of the subtype-specific
coefficients 3, and one block for each row of B. Each block
appears in a quadratic term in the likelihood of each patient,
and so it is easy to see that holding all other blocks fixed,
the coordinate ascent step can be maximized exactly. We cy-
cle through the block updates until the value of Equation 13
converges, and iterate over the EM updates until the joint
shown in Equation 10 converges. The updates for each of

the parameters 71.¢, 51.¢, and B are listed in Section A1 of
the supplementary material.!

Scalability PSM is designed to aid in the subtype discov-
ery process when large electronic health databases are avail-
able for analysis. Thus, the scalability of the learning algo-
rithm is a natural concern. The primary computational bot-
tleneck of the PSM learning procedure is the E-step, which
may be expensive due to (1) the number of individuals in
the analysis, or (2) the inversion of the individual covariance

"www.cs. jhu.edu/ " ssaria/psm_supp.pdf.



matrices >; (e.g., in Equation 11). The computational com-
plexity due to large M can be offset by parallelizing the E-
step because the individual-specific latent variables are con-
ditionally independent given ©. Inversion of 3J; has compu-
tational complexity O(N?). Because we study disease ac-
tivity over the course of 10-20 years and because visit rates
typically do not exceed 12 per year, the number of measure-
ments [V, is typically on the order of 100-200 measurements.
Inversion of ¥, is therefore inexpensive.

Inference

To obtain a posterior prediction of an individual’s disease
activity trajectory, a subtype is first chosen using the most
likely value of z; under the distribution in Equation 11. Con-
ditioned on subtype membership, we estimate l_); and f; by
first conditioning on f; = 0, and computing the MAP esti-

mate of b;. From Figure 1, it is clear that after conditioning

on z;, f; and O, the joint distribution over l;; and y; is a linear
Gaussian system. We can therefore use standard equations to

obtain the MAP estimate of l;z

b; = 3, ((772‘7 (E)T gl 4 Eb_lﬁb) , where

. 5 —1
5, = (07 @) v () + %)

g1 = g — ¢ (£)) B., —~ (i;) B

We choose to temporarily condition on f; = 0 in order to
use the long-term variability to explain as much of the in-
dividual variation as possible. This encodes our preference
for a parsimonious posterior prediction that uses the sim-
pler long-term variability before relying on the more com-
plex Gaussian process.

Finally, conditioned on z; and l_); the individual’s short
term variation is defined at time ¢* to be

fz(t*) _ k(t*,t_;) (k/’(t_;,t_;) +021)_1 g;/(fl‘g‘l,,z’l.), where

g = g — ¢ () B, — v (F) BE — v (8) bi.

This is simply the MAP prediction of a Gaussian process.
A new measurement y* taken at time ¢* is then predicted to
be:

Y =@ (t°) Boy +y () BT+ () b+ fi(t*) . (14)
—_——— —— N——— ——

subtype covariate long-term short-term

It is also useful to characterize posterior uncertainty in
prototypical trajectory estimates when drawing qualitative
inferences from the model. Estimates of posterior uncer-
tainty are described in Section A2 of the supplement.

Experiments

The purpose of PSM is to discover subtypes, useful for tasks
such as developing tailored treatment plans and advanc-
ing understanding of underlying disease mechanisms. Ex-
ploratory clustering method evaluations are two-fold. From

a quantitative perspective, we want to measure the model’s
fit to data. From a qualitative standpoint, we want to judge
the insights that the model conveys. Consequently, we assess
the merit of PSM using two experiments. First, we investi-
gate PSM’s ability to predict unobserved s-marker measure-
ments. In the absence of ground-truth subtypes that we can
use to compute a cluster-based metric, we instead measure
the generalizability of PSM by evaluating posterior predic-
tions of held-out s-marker observations.?> Our second exper-
iment involves qualitative analyses of the subtypes discov-
ered by PSM. We evaluate the clinical merit of the proto-
typical disease activity trajectories discovered, and discuss
follow-up clinical investigations that have stemmed from our
results.

Scleroderma S-markers

Scleroderma is a multi-system autoimmune disease resulting
in insults that include damage to the skin, pulmonary system,
and circulatory system. For our experiments we choose four
datasets, each containing the s-marker corresponding to one
of the major organ systems implicated in scleroderma. Total
skin score (TSS) scores the thickness of the skin, which is
used as a surrogate measure for the degree of fibrosis. An
increased TSS indicates more extensive fibrosis across the
individual’s body. Percent of predicted forced vital capacity
(pFVC) measures the volume of air expelled from the lung
after maximum inhalation. pFVC is a measure of restricted
ventilatory defect, which may reflect the severity of inter-
stitial lung disease (ILD). Percent of predicted diffusing ca-
pacity (pDLCO) measures the efficiency of oxygen diffusion
from the lungs to the bloodstream. Decreases in pDLCO in-
dicate a defect in gas exchange, which is associated with
development of pulmonary arterial hypertension (PAH). Fi-
nally, right ventricular systolic pressure (RVSP) measures
systolic pressure in the chamber of the heart that directly
pumps blood through the pulmonary vasculature. Signifi-
cantly increased systolic pressure suggests an increased risk
of heart failure due to pulmonary arterial hypertension. We
focus here on the analysis of subtypes for each of the compli-
cations individually. If subtypes exist, then a natural follow-
up is to identify whether a common mechanism might jointly
influence trajectories for two or more organ systems, but this
relies on first developing an understanding of the individual
s-markers; the focus of our analyses below.

Unobserved S-marker Prediction

Our first experiment evaluates the accuracy of s-marker
value predictions at unobserved times for models that in-
corporate different types of nuisance variability. The first
model includes covariate effects and group/subtype effects
(C+G). The covariates provided to us were gender, African
American race, and age at disease onset, which are well-
known risk factors for severity in scleroderma (Varga, Den-
ton, and Wigley 2012). The second model uses individual-

2 Alternatively, one may use held-out data log-likelihood, but we
choose predictive accuracy because the task of prediction is natu-
ral in the clinical setting and it is therefore easier to interpret the
significance of the results.



) i ®) N

© D)

419 444 | 376 561

516 661 106 309

1037 1251 |

2
3

\g\:ﬁ_/ /\../’/'J

.
| 880 |
.

™

1399 1741 | 1572 [ 1833

952 Il 1383 | 1159 | 1723

aoh\"fﬂwﬁ TE— sof\v.\k.‘{'/_/ \\4\/

404

1838 1898 | 2106

3
B

1747 Il 2210 1781 | 2002

| i | (R | | | | i | (R |
0 5 10 15 0 5 10 15 0 5 10 15 0 10

5
Years Since First Symptom

100+
.
o e e
80+ r‘/-/k"‘.—"
% 60+
[ I I 40 i U
5 10 15 0 5 10 1

.
.

i | (R ' ' ' o .

5 10 15 0 0 5 10 15 5

Figure 2: Example model fits to individual pFVC trajectories. Samples from four subtype candidates are displayed; one subtype
per 4 by 2 block of individuals. Solid lines show full model fit (computed using Equation 14). Dots show observed pFVC
values. Solid lines at the top of each block show the prototypical s-marker trajectory for that subtype.

specific long-term effects in addition to covariate and group
effects (C+G+L). Finally, PSM uses covariate, group, long-
term, and short-term effects.

To choose the number of groups G for each model, we use
BIC as follows: we randomly generate five folds of the data
by subsampling 75% of the individuals without replacement.
For each model and for each choice of GG, we compute the
average BIC across the five folds and choose the number of
clusters that results in the largest sequential drop in BIC (i.e.
we search for the “elbow”).

For each model, we use P = 5 bases and non-informative
priors for the parameters; & = 2, fig = jip = 0, and
¥ = ¥p = diag(l x 10°). The prior variance on by
was kept relatively small to limit the amount of variabil-
ity that could be explained using long-term individual ef-
fects: 33, = diag(v,) where v, was swept along the log-10
scale from {—1, ..., —5}. Similarly, to limit the amount of
variability explained by the Gaussian process, the GP hy-
perparameters {a, {,c} were each swept from {1,...,5}.
Years since first scleroderma related symptom was used to
align each individual on the time axis. We truncate time at
15 years following the first scleroderma related symptom.
An individual was included in the experiment if there were
at least 4 measurements available. We used 1,011, 1,177,
1,114, and 504 individuals for TSS, pFVC, pDLCO, and
RVSP respectively. Within this subset of individuals, the av-
erage number of measurements for each s-marker over the
15 year period is: 9.1 for TSS, 8.6 for pFVC, 8.3 for pDLCO,
and 6.0 for RVSP. The average time in years between ob-
served measurements for each s-marker is: 0.9 for TSS, 0.9
for pFVC, 1.0 for pDLCO, and 1.3 for RVSP.

To estimate prediction error, we split the individual trajec-

tories into 10 groups and use 10-fold cross validation. PSM
is trained on nine of the ten folds, and predictions are made
for the tenth fold as follows. We select four s-marker obser-
vations from each held-out trajectory and assign each to a
point-level fold. For each of the point-level folds, we con-
dition on the remaining s-marker observations and use the
MAP estimates of the held-out observations as our predic-
tions. We compute root mean squared error (RMSE) for each
point-level fold across the trajectory-level folds, and finally
compute the mean RMSE and standard errors across point-
level folds.

The prediction results and standard errors are displayed
in Table 1. We see that PSM significantly outperforms the
alternative models for TSS, pFVC, and RVSP. Although an
improvement is demonstrated for pDLCO, the difference is
not statistically significant. Figure 2 displays model fits to
individual trajectories sampled from four of the discovered
candidate subtypes (one subtype per 4 by 2 block of individ-
uals) for the pFVC s-marker. Note that blocks display overall
similar behavior, but that long-term and short-term variabil-
ity tailor predictions for each individual using the observed
markers.

S-marker | C+G | C+G+L | PSM
TSS 5.324+0.18 5.41 £0.07 *4.43 +£0.14
pFVC 9.27 +£0.49 9.34 + 0.46 *7.69 £0.39
pDLCO 15.03 +£1.82 | 15.134+1.93 14.08 £ 1.77

RVSP 12.21+£0.50 | 12.11+0.44 | *10.89 £ 0.27

Table 1: RMSE with standard errors for s-marker prediction.
Bold shows best performance on s-marker; * shows statisti-
cal significance (p < 0.05).

Simulated Data Trajectory Estimate Accuracy Another
natural question is whether modeling these sources of vari-



ability reduces bias in our estimates of the prototypical tra-
jectories. In other words, do the individual deviations cancel
out so that PSM offers no benefit over less expressive mod-
els like C+G? For this, we turn to simulated data and inves-
tigate whether PSM recovers prototypical trajectories more
accurately than C+G and C+G+L.

The simulation model samples observation time-stamps
by sampling the N; from a Poisson distribution, and, con-
ditioned on NV;, samples t: from a Gaussian mixture model.
The ¥; are then sampled from a subtype mixture model with
a hierarchy of individual-specific long-term, short-term, and
iid noise as employed within PSM. The parameters used for
the simulation are specified in Section A3 of the supple-
mentary material. We compare the same three models used
above, but do not simulate covariates and so they are not
included. To measure bias, we find the alignment between
estimated and true trajectories that minimizes the RMSE av-
eraged across each estimated-true pair; to compute RMSE
between two curves, we use a discrete approximation.

The iid noise o = 0.1 for all simulations, and the left col-
umn of Table 2 shows the amplitude a of short-term individ-
ual variability and standard deviation of individual-specific
intercept terms oy,. Individual specific slope variance was set
to 1 x 10~* for all simulations.

We see that as more nuisance variability is added, PSM
is able to recover less biased trajectory estimates. In Sec-
tion A4 of the supplementary material, we provide plots
that show example individual trajectories from these exper-
iments and how they contribute to the bias of prototypical
trajectory estimates.

(a,op) \ G | G+L | PSM

0.00,0.10) | 0.27£0.06 | *0.04 + 0.01 0.07 £ 0.06
0.00,0.15) | 0.34 +£0.05 | *0.05 £ 0.01 0.09 £ 0.06
0.11 £ 0.05 0.14 £ 0.08

0.18+0.04 | *0.13 +0.06
0.20,0.15) | 0.36 +£0.05 0.25+£0.07 | *0.14+0.07
(0.25,0.15) | 0.36 £+ 0.06 0.32+£0.07 | *0.18 £0.04

Table 2: Estimated trajectory RMSE and standard errors
(computed over 20 replications) for simulations. Bold indi-
cates best performance, statistical significance is indicated
using * (p < 0.05).

(
(
(0.10,0.15) | 0.34 +0.04
(0.15,0.15) | 0.34+0.05
(

Discovered Subtypes

We now present a qualitative discussion of the discovered
subtypes. For all results below, we use non-informative pri-
ors for the parameters; o« = 2, jig = fip = 0, and
Y3 = ¥p = diag(l x 10°). The prior variance on by
was kept relatively small to limit the amount of variability
that could be explained using long-term individual effects:
3, = diag(vp) where v, was swept along the log-10 scale
from {—1,...,—5}. Similarly, to limit the amount of vari-
ability explained by the Gaussian process, the GP hyperpa-
rameters {a, ¢, o} were each swept from {1,...,5}.

We begin with pFVC. Figure 3A displays the clusters
learned using PSM on pFVC trajectories of 1,177 individ-
uals with G = 9 (chosen using BIC), and Figure 2 displays
individual trajectory fits from 4 of the 9 clusters. We first
focus on the subtypes displayed in panels (A), (B), and (C)

of Figure 2. Each of these show distinct patterns of decline:
individuals in (A) have a steady, linear progression, those in
(B) decline quickly within the first five years and then stabi-
lize, and those in (C) are stable for the first five to ten years
and then decline rapidly. Many of these individuals have at
least one measurement that drops by more than 7% from the
previous observation, which is clinically considered to sug-
gest interstitial lung disease (see, for example, Beretta et al.
2007). It is clear, however, that they display unique patterns
of decline, which has raised the question of whether indi-
viduals with these different subtypes differ with respect to
their antibody profiles (since scleroderma is an autoimmune
disease).

We now turn to panel (D). Fibrosis in the lungs due to end-
stage interstitial lung disease is thought of as non-reversible
damage. The individuals shown in panel (D), however, be-
gin with inhibited pulmonary function, but slowly recover.
This pattern of recovery warrants additional investigation; it
is possible that in these patients, the initial insult is not due
to end-stage lung disease, but rather due to other causes of
restricted ventilatory defect such as inflammation. Recog-
nizing this pattern may alter clinical management of these
patients. Moreover, if it is the case that these patients all
share a common comorbidity at the onset of disease, then
it may suggest the presence of another subtype whose un-
derlying mechanism triggers the comorbid condition.

Figure 3B displays the clusters learned by PSM for To-
tal Skin Score (TSS) using M = 1,011 individuals with
G = 5 (selected using BIC). TSS is a well-studied s-marker
in scleroderma, and is used for one of the primary clinical
classification criteria. Individuals with more extensive skin
disease have higher TSS scores. Traditionally, skin disease
in scleroderma is defined as limited (minimal involvement
at the system level) or diffuse (systemic level involvement)
(Varga, Denton, and Wigley 2012). Here we see five clusters:
clusters 4 and 5 exhibit limited involvement, and clusters 1,
2, and 3 indicate different patterns of diffuse skin disease.

Figure 3C displays the clusters learned using PSM for
pDLCO using M = 1,114 individuals with G = 11 (chosen
using BIC). Clinicians monitor pDLCO to detect the onset
of pulmonary arterial hypertension (PAH), one of the most
prominent sources of mortality among patients with sclero-
derma. Once pDLCO is low enough, an individual will typ-
ically be screened using additional diagnostic tests (Steen
and Medsger 2003). It is clear from Figure 3D, however,
that there are several patterns of decline (seen in clusters 2,
8,9, 10, and 11). Understanding whether particular patterns
of pDLCO decline are more predictive of PAH may help to
develop more effective clinical heuristics.

Finally, Figure 3D displays the clusters learned using
PSM for RVSP using M = 504 individuals with G = 5
(chosen using BIC). The RVSP results are noisier than the
others, which may be due to the inherent noise in the mea-
surement process. RVSP is measured using an echocardio-
gram, and is inaccurate when the true underlying systolic
pressure is between 30 and 45 mmHg (millimeters mercury).
We note that there are two groups (1 and 4) with stable,
healthy pressures, which are presumably individuals with no
serious circulatory complications. The remaining three clus-



Figure 3: Discovered subtypes for all four s-markers. Panel (A) shows pFVC, panel (B) shows TSS, panel (C) shows pDLCO,
and panel (D) shows RVSP. Prototypical s-marker trajectories are shown in black, and individuals sampled from the subtype
are shown in color. Colored lines show the individualized s-marker trajectory, and colored points show the observed s-markers.

Best viewed in color.

ters (2, 3, and 5) are more difficult to interpret because they
are not associated with any known patterns of heart involve-
ment; this may be attributable to the noisiness of the obser-
vations, or other phenomena that are as yet unknown. These
remain the subject of future clinical follow up.

Joint Analysis of S-Markers We have focused our anal-
yses using PSM on single s-marker subtypes. A natural
follow-up question is whether we can infer clusters across
multiple s-markers. If we are analyzing K s-marker types,
then, as presented, PSM assumes the following joint distri-
bution over s-marker sequences ¥ and memberships 2.

K
I_Ip(gﬂc | zik,@)p(zik) . (15)

k=1
We can replace the fully factored distribution over
2, ..., 2 with a complete joint p (z},...,2f) toinduce

correlations across s-marker types. The posterior distribu-
tion over z}!, ..., 2 can be inspected to discover clusters
defined over multiple s-markers.

A simpler alternative when full posterior inference over
group memberships is not desired, is to represent each in-
dividual using a vector of categorical variables indicating
cluster membership for each s-marker as inferred by PSM
(e.g. [tss-type-1, pfvc-type-3, dlco-type-2, ...]). Then, us-
ing a distance-based clustering method, such as hierarchical
agglomerative clustering (HAC), clusters across multiple s-
marker types can be obtained. Due to space constraints, we
omit analyses of joint clusters.

Discussion

This paper presents the Probabilistic Subtyping Model, a
model for clustering time series of clinical markers ob-
tained from routine visits to identify homogeneous pa-
tient subgroups. We introduce the concept of nuisance
variability—effects due to factors such as age and co-
existing conditions—that affect the observed clinical test re-
sults, but are unrelated to the underlying disease mechanism.
PSM introduces a framework for modeling these sources of
nuisance variability to uncover disease activity subtypes that
are likely candidates for endotyping.

PSM identified novel subtypes for each of the four key or-
gan systems affected in patients with scleroderma. To iden-
tify whether these subtypes are indeed distinct disease mech-
anisms, our ongoing clinical experiments are investigating
whether there exist molecular differences consistent with
these subtypes.

PSM provides a new tool to clinicians for studying can-
didate subtypes, especially useful in complex, chronic dis-
eases such as neuropsychiatric and autoimmune diseases
(e.g., scleroderma is one of 80 autoimmune diseases) known
to be heterogeneous and poorly understood. As electronic
medical records continue to amass data from routine visits,
there will be growing need for such tools to refine our char-
acterization of what constitutes a disease.

A natural direction for follow up is to identify ways to
quantify effects of variability in treatment protocols across
individuals on the estimated subtypes.
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